Transport equations and quasi-invariant flows on the Wiener space

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flows Associated to Tangent Processes on the Wiener Space

We prove, under certain regularity assumptions on the coefficients, that tangent processes (namely semimartingales dξτ = adxτ + bdτ where a is an antisymmetric matrix) generate flows on the classical Wiener space. Main applications of the result can be found in the study of the geometry of path spaces.

متن کامل

On the space of ergodic invariant measures of unipotent flows

Let G be a Lie group and Γ be a discrete subgroup. We show that if {μn} is a convergent sequence of probability measures on G/Γ which are invariant and ergodic under actions of unipotent one-parameter subgroups, then the limit μ of such a sequence is supported on a closed orbit of the subgroup preserving it, and is invariant and ergodic for the action of a unipotent one-parameter subgroup of G.

متن کامل

Quasi-invariant measures on the path space of a diffusion

The author has previously constructed a class of admissible vector fields on the path space of an elliptic diffusion process x taking values in a closed compact manifold. In this Note the existence of flows for this class of vector fields is established and it is shown that the law of x is quasi-invariant under these flows. Résumé L’auteur a précédemment construit une classe de champs de vecteu...

متن کامل

Cumulants on the Wiener Space

We combine infinite-dimensional integration by parts procedures with a recursive relation on moments (reminiscent of a formula by Barbour (1986)), and deduce explicit expressions for cumulants of functionals of a general Gaussian field. These findings yield a compact formula for cumulants on a fixed Wiener chaos, virtually replacing the usual “graph/diagram computations” adopted in most of the ...

متن کامل

Some topologies on the space of quasi-multipliers

‎Assume that $A$ is a Banach algebra‎. ‎We define the‎ ‎$beta-$topology and the $gamma-$topology on the space $QM_{el}(A^{*})$ of all bounded extended left quasi-multipliers of $A^{*}.$‎ ‎We establish further properties of $(QM_{el}(A^{*}),gamma)$ when $A$ is a $C^{*}-$algebra‎. ‎In particular‎, ‎we characterize the $gamma-$dual‎ ‎of $QM_{el}(A^{*})$ and prove that $(QM_{el}(A^{*}),gamma)^{*},$...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin des Sciences Mathématiques

سال: 2010

ISSN: 0007-4497

DOI: 10.1016/j.bulsci.2009.01.001